REVIEW OF AUSTRALIAN ISOPODS OF THE CYMOTHOID GROUP.

Part II.(1)
By Herbert M. Hale, Zoologist (Crustacea), South Australian Museuni. (Contribution from the South Australian Museum.)

[Read Aligust 12, $1926 . \mid$
Plates XXXVI. and XXXVII.
Family CYMOTHO[DAE.
The representatives of this fanily, when adult, are distinguished by the following characters:-Antennae short, not clearly divided into peduncle and flagcllum. Mandibles with stout, three-jointed palp. First maxillae styliform. with a fcw apical spines. Apex of second maxillae bilobed. Palp of maxilliped two-jointed, the terminal article as a rule furnished with hooked spines. Pleopods, uropods, and telson rarely with any trace of marginal hairs. Peraeopods prehensile, terminating in curved (and usially strong) dactyli.

All the specics are parasites, and in the adult state some are variable in form, the body bcing asymmetrical, twisted, or distorted. At least seven of the genera are represented off Australian coasts; the keys to the Australian genera and spccies refer to adult specimens.

In dealing with this family I wish to express thanks to Dr. K. H. Barnard, of the South African Museum, and to Mr. F. A. McNeill, of the Australian Maseum, for assistance with literature not available in Adclaide libraries.

Key to Austrafian Genera.

a. Pleon composed of six distinct segments. Exopod of first pair of pleopods soft, not curved over sides of pleon.
b. Cephalon not at all immersed in first peraeon scyment, with posterior margin trilobate. Anterior margin of first peracon segment trisinuate.
c. Peracon relaxed and usually flattened; posterior angles of hinder segticuts often prominently produced; all coxal plates large Peracon compact; posterior angles of hinder seyments never produced; coxal plates of fourth to seventh segments small .. bb. Cephalon more or less immersed in first peracon segment. with posterior margin not trilobate. Anterior margin of first peraeon segment not trisinnate.
d. Antennae somewhat compressed, not at all dilated, the bases of the first pair widely separated.
\&. Pleon abruptly narrower than peraeon Cymothoa
co. Pleon not abruptly narrower than peraeon.
f. Pleon rarely strongly immersed in peracon. Carina of basos
of posterior peraeopods more or less prominent. Upper lip
 If. Pleon usually strongly immersed in peracon. Carina of minently projecting $d d$. Antennae considerahly dilated, the first pair contiguous at base au. Pleon segments fused together. Exopod of first pair of pleopods hard, curved over sides of pleon
livoneca

Trona
Codonophilus
Ourozenktes

[^0]Nerocila, Jeach.
Nerocila, Leach, Dict. Sci. Nat., xii., 1818, p. 351; Sch. and Mein., Naturh. Tidsskr., (3) xiii., 1881 , p. 4 , Stething, S. Afr. Crust., ii., 1902, p. 55 (syn.) ; Rich., Bull. U.S. Nat. Muis., iiv., 1905 , p. 219.

Pterisopodus, Boone, Proc. U.S. Nat. Mus., Fiv., 1918, p. 219.
The posterior margin of the cephalon is prominently trilobate, and the anterior margin of the first peraeon segment is correspondingly trisinuate. The peracon is depressed and somewhat relaxed and all the coxal plates are large and prominent.

It is known that in the Cymothoidae, protandrous hormaphroditism occurs in at least four genera, one of which is Nerocila. Calman ${ }^{(2)}$ remarks that "In certain Cymothoinae the extcrnal characters of the male sex do not completely disappear when the individual passes into the female phase, the copulatory appendage of the second pleopods sometimes remaining of conspicuous size even in specimens which have the marsupium filled with eggs." In fig. $1, e, f$, and g are

Fig. 1.
a to ε, Second pleopods of five specimens of Nerocila macleayii, respectively 17 nam.. $18.5 \mathrm{~mm} ., 21 \mathrm{~mm} ., 26 \mathrm{~mm}$., and 33 mm . in length, showing diminution in relative length of male appendage as the anmal grows; the pleoforl at c is that of an ovigerous female, but the male appendage is persistent; f and g, second pleopods of ovigerous females of N. laticanda and N. sorra, with male appendage (all 5 diam.).
dirawings of the second pleopod of an ovigerous female of each of the species of Nerocila occurring in Australian waters; the exampies from which the organs were taken have a well-developed brood pouch cranmed with either eggs or young, but, nevcrtheless, the "appendix masculina" is retained. An examination of some two score specimens of N. macleayii and N. lalicauda indicates that the malc appendage of the second pleopods is long in the young and steadily diminishes in relative size as the animals grow, and that it is commonly retained, in a thin and abbreviated form, in the ovigerous females of these species. Thus, in a specinen of N. macleayii 17 mm . in length the appendage is longer than the endopod, in an example 18.5 mm . in length it is a little shorter than the endopod. and so on, until in the aduit female it is not much more than one-half as long as the cadopod (fig. 1, a to c).
${ }^{(2)}$ Calman, Lankester's Treatise on Zool. (Crust.). 1009, p. 213.

Kley to Australian Species.
a. Coxal platcs of seventh peraeon segment not reaching back beyond posterior angles of that segment. Edges of endopod of uropoda not serrate.
b. Uropoda not or scarcely extending beyond apex of telson, with endopod sub-oval and apically romnded
laticauda
bb. Uropoda extending beyond apex of telson, with apex of endopod acute.
c. Postero-lateral angles of second and third peraeon segments not backwardly produced; endopod of uropoda with intero-posterior margin very obliquely trancate and sometimes slightly concave
cc. Postero-lateral angles of sccond and third peracon segments backwardly produced; endopod of uropods with inner margin slightly curved and outer margin somewhat sigmoidal
marleayii
australasiac
aa. Coxal plates of seventh segment reaching back beyond posterior angles of that segment; edges of endopod of uropoda conspicuonsly serrate

As will be seen from the illustrations the maxilliped is very similar in the three species examined, the organs only differing in relative width, commensurate with the form of the animal concerned; the maxillae also are apparently of little specific value.

Nerocila laticauda, Schioedte and Mcinert.
Nerocila blainvillci, Scl. and Mein., Naturh. Tidsskr., xiii., 1881, p. 78, p1. vi., figs. 11, 12 (nec M. Edwards).

Nerocila laticaulda, Sch. and Mein., loc. cit., p. 81, pl. vi., figs. 14, 15; Whitel., Mem. Austr. Mus., iv., 1901, p. 235.

ㅇ. Ovigerous. Surface smooth or almost smooth, with a very few scattered punctures. Cephalon subquadrate, a little wider than medianly long; eyes very obscure. First antennae a little shorter than second and composed of eight articles; second antennae reaching back to level of hinder margin of cephalon, composed of nine articles. First article of palp of mandibles stotiter and not much longer than second. which is longer than the third article. Peraeon widest at fifth segment; medial length of first segment a hittle greater than that of second to fourth segments, and subequal to that of fifth to seventh segments : postero-lateral portions of ali segments produced outwards and backwards, those of the last three segments very prominently produced, in the seventh segment reaching back to beyond level of hinder margin of fifth plcon scgment. Coxal plates almost wholly concealed by expanded lateral parts of peracon segments in dorsal view, only a tiny portion of the first two pairs being visible; all strongly carinate; the plates of the second segment do not nearly reach to the posterolateral angles of the segment and the next pair reach to the middle of the length of the lateral margin of their segment; those of the fourth segment scarcely extend beyond level of posterior angle of the third segment, those of the fifth and sixth reach a littie beyond level of the posterior angles of the fourth and fifth segments, while those of the seventh segment do not attain the level of the posterior angles of the sixth segment. First five segments of pleon subequal in length and widith, medianly tumid, and with pletral portions somewhat produced; telsonic segment stubquadratc, about one-third wider than medianly long. Cropods not quite reaching to hinder nargin of telson; with both rami suboval, the cxopod longer and wider than the endopod. Peracopods stout and strong, slightly increasing in length backwards.

Colour during life: Dorsum dark olivaceous, with lateral portions of head, a diffused stripe on each side of mid-line of peraeon and pleon, and lateral margins of peracon and pleon, whitish. Undersidc whitish, with the outer face of each coxal plate and the outer half of the exopod of the first pair of plcopods. sooty.

Length, 32 mm .

Loo．－South Australia ：Kingston，S．E．Coast，and Port Willunga，from Raja australis（S．Austr．Mus．Coll．）．Western Australia：Albany（W．Austr．Mus． Coll．）．Victoria：Port Phillip（J．B．Wilson）．New South Wates：Off Botany Bay，50－52 faths．；off Wata Mooli，70－78 faths．；off Cape Three Points，41－50 faths．；and off Jibbon， $50-66$ faths．（＂Thetis＂Exped．）．La Perouse，Botany Bay （I．D．Ogilby），Port Jackson（Austr．Mus．Coll．）．

Hab．－－Western，Southern，and Eastern Australia．
There is considerable variation in the series of adult specimens of this species which is before me．In the example shown at a in fig． 2 （a male 23 mm in length），the lateral parts of the last three peraeon segments are more expanderl and backwardly produced，and the pleural parts of the first five pleon segments are minch more prominent than in the female at i ．The peraeon segments are not at all expanded in very young articles，and，generally，the form of small

ス゚ッ．

Fig． 2.
Verocila laticauda．Adult male phase：a，dorsal view（ 21 diam ）；b ，palp of mandible （19）diam．）；c and d ，first and second maxillae（19 diam．）；c ，maxilliped（ 19 diam．）； f and g ，first and seventh peraeopods（ 5 diam．）；h ，second pleopod（ t diam．）． Ovigerous female：i and j ，dorsal and lateral views（ $1 \frac{1}{2}$ diam．）；h ，antennae（ 6 diam．）； l ，uropod（ 5 diam．）．Juvenile from marsupium：m，dorsal view（ 11 diam．）；n ，uropod （ 19 diam．）；a ，apex of exopod of uropod（ 95 diam．）．
specimens is narrower than in the adult．The extent to which the segments are produced is，however，by no means constant，and a few small specimens have the lateral parts of the peraeon segments much more expanded than in some of the large ovigerous fomales．In the last－named the sides of the segments are occa－ sionally scarcely at all expanded（so that all the coxal plates are visible in dorsal view）and the postero－lateral angles of only the sixth and seventh segments are backwardly produced（fig． $3, c$ ）．［ntermediate forms between this and the greatly widened variety occur in other of the adults．The telsonic segment is somewhat
variable in shape, and may be subquadrate or even obscurely subcordate; the posterior margin is usually gently cornvex or sinuate. but is occasionally concave.

The salient features of the adult are as follows: The lateral parts of the last peraeon segment are always more or less widely expanded, and are produced backwards to at least the level of the posterior angles of the third pleon segment -usually they extend further back than this; the lateral parts of the other segments are generally more or less expanded and produced backwards. The apex of each of the last pair of coxal plates, at most, scarcely reaches past the middle of the length of the lateral margin of the seventh segment. The branches of the uropodit are, as a rule, both suboval (sometimes the exopod is acutely rounded apically), and do not reach much beyond the posterior margin of the telson.

In young cxamples taken from the marsupium of the mother the cephalon is relatively much larger than in the adult, and the eyes are large. None of the segments of the peraeon or pleon is backwardly produced or laterally expanded. The uropods are of interest in that they differ somewhat considerably from those of the adult. The suboval endopod is scarcely one-half as long, and is one-hali as wide again, as the lanceolate exopod; the posterior half of the margins of the endopod, and the inner margin of the exopod, are furnished with hairs, and

Fig. 3.
Variation in form of Nerocila laticanda: d, c, and f are outlines of ovigerous females (all 2 diam.).
the apex of the exopod bears two strong spines. The colour is whitish with the whole dorsum, excepting the telson. dotted with brown chronatophores, which are larger on the cephalon than on the peraeon or pleon. The example fignred at m, fig. 2, is 3.14 mm . in length, and was taken from the pouch of a demale of the form shown at i.

Examples only 10 mm . or so in length have the characteristic colour markings as described for the adult, the dark parts consisting of a great number of closely massed chromatophores. In specinens of this size the eyes are tiny, the exopod of the aropods is subacute apically, is much longer than the endopod, and reaches beyond the level of the obtnsely angular apex of the telson.

The specimens referred to "Nerocila blamaille" by Schioedte and Meinert were taken "ad Adelaide, Novae-1tollandiac." but, as shown above, the two forms considered by these authors to be distinct species are connected by intermediate varieties. Milne Edwards' description indicates that N. blainvillo is an entirely different species, for this author remarks ${ }^{(3)}$: "Espèece très-voisine de la
(3) M. Edw., Hist. Nat. Cuust., iii., 1840. p. 252.
précédente, $[N$. biaittala] mais ayant les angles du tergum des anneaux plus pointus, les épimères plus allongés (lcs deux dernières paires dèpassant de beaucoup les angles dut tergum correspondans). . . . Patric ineonnue."

In N. laticauda the posterior coxal plates do not nearly reach to the posterior angle of their segment. The coxal plates of N. bizittata, as shown in the figures of Schioedte and Meinert ${ }^{(4)}$ are much longer than those of the specimen figured ly the same authors as N. blaineille i.

Nerocila macleayif, White.

Nerocila maclcayii, White, in Dieffenb. Voy. N. Zeal, ii., 1843, p. 268; Miers, Rep. Zool., "Alert," 1884, p. 301 ; Chilton, Trans. N. Z'd. Inst., xxiii., 1891, p. 68, pl. xi.

Nerocila imbricata, Miers, Cat. Crust. N. Z'd., 1876, p. 107.
Nerocila notac-scalandiac, Sch. aukl Mein., Naturl. Tidsskr., (3) xiii., 1881, p. 70, pl. v., figs. $10,11$.
9. Ovigerous. Surface giabrous, with a very few seattered punctures. Cephalon rounded, with posterior margin very distinctly trilobate; much wider

Fig. 4.
Verocila mateayii. Ovigerous female: a and b, dorsal and lateral views ($1 \frac{3}{t}$ diam.) ; c, pleon of another cxample (13 diam.) ; d, palp of mandible (19 diam.) ; e and f, first and second maxillae (19 diam.) ; g, maxilliped (19 diam.) ; h and i, first and seventh jeraeopods (5 diam.) ; j, uropod (5 diam.). Juvenile from marsupium: k, dorsal view (10 diam.) : l, uropod (29 diam.). m, Immature example, 17 mm. in length (3 diam.).
than medianly long; eyes small but distinct. First antemae siouter and a little shorter than second, composed of six articles; second antennae reaching back to middle of length of first peraeon segment and composed of eight articles. First article of palp of mandibles stouter and more than half as long again as

[^1]second, which is scarcely longer than the third article. Peraeon widest at fifth and sixth segments; medial length of first segment distinctly greater than that of second, third, or fourth segment and subequal to that of fifth, sixth, or severth segment; postero-lateral parts of sixth and seventh segments backwardly produced in a narrow process with acute posterior angles; posterior angle of first segment very slightly produced backwards. All coxal plates more or less visible in dorsal view; last three pairs obtusely carinate and with posterior angles acute; plates of second to fifth segments reaching to or a little beyond posterior angle of their segments, those of sixth and seventh segments not nearly attaining level of posterior angles of their segments. First five segments of pleon subequal in length; plcural portions of first and second segments produced into narrow, flat processes, those of the second segment reaching back to level of posterior angles of fifth segment; telsonic segment subcordate, wider than long. Endopod of uropods reaching slightly beyond level of apex of telson, wider and much shorter than the exopod, with lateral margins subparallel and with inner posterior margin very obliquely truncate, so that the apex of the ramus is acute. Peracopods moderately stout, successively increasing in length; seventh pair with one spine on inner margin of merus, three on inner margin of carpas, and four or five on inner margin of proporlus.

Fig. 5.
Nerocila macleayit clinging to tail of Temmodon saltator (2 (1am).
Colour in alcohol: Dark olivaccous, sometimes with segments margined with paler colour, sometimes with a pale stripe on each side of mid-line of pleon; in some cases the stripes meet, thus forming a TT-shaped marking on the telson.

Length, 32 mmon .
Loc-New South Wales: Port Jackson and from Mold mola (Austr. Mus. Coll.), Port Hacking (D. G. Stead), Shoalhaven (C. Hedley), Eden, from fin of flying gurnard (A. Cameron). Victoria: Warrnambool, from fins of Chinacra (J, L., Fcnton). Western Australia: Nornalup linlet, on tail of Temnodon sallator; Fremantle, Bunbury, and Albany (W. Austr. Mus. Coll.). No definitc loc., from Sardinia neopilchardus (I. D. Ogilby).

Hab.-Australia and New Zealand.
According to the series before me there is not such variation in the fully developed fernale of this species as in N. laticauda. Two ovigerous females. however, taken from a pilchard, are but 21 mm . in length, are narrow in form. and have the postero-lateral angies of the sixth and seventh perateon segments scarcely at all produced backwards (so that the last coxal plates attain the level of the posterion angles of their segment), and the pleural processes of the first.
and second pleon segments are little developed; these two specimens resemble very closely an immature example figured by Chilton. ${ }^{(5)}$ Other large examples, which are still in the male phase, have the posterior peraeon and anterior pleon segments produced as in the large ovigerous females. Some of the last-named are a little wider in form than the example shown in fig. 4, and others have the postero-lateral angles of the fifth peracon segment a little backwardly produced, so that the coxal plates of this segment also do not reach to the level of the posterior angles. As in N. laticauda, the relative lengths of the branches of the uropods are somewhat variable.

The salient features of the adults of the species are as follows:--The posterolateral angles of the second and third peraeon segments are never backwardly produced. The coxal plates of the seventh segment do not extend to the level of the posterior angles of that segment, except in small specimens in which the posterior angles of the segments are scarcely at all produced. The uropoda reach beyond the apex of the telson; the endopod is very obliquely truneate, with the apex acute, while the exopod is narrower and usually much longer than the endopod. 'The pleural processes of the first and sceond pleon segments reach to at least the level of the hinder margin of the fifth pleon segment in large examples; sometimes they are even longer.
N. callformica. Schioedte and Meineri, appears to be elosely related to N. macleayii.

The immature example figured by Chilton (ut supra) is approximately 20 mm . in length; a slightly younger form, 17 mm . in length, is here shown in nis. 4, m. In this specimen the antennae reach back to the posterior margin of the first peraeon segment, the uropods are much as in the "virgo" figured by Schioedte and Meinert, and the eyes are still large and prominent; in examples 20 mm . or more in length the eyes are much smaller and contain fewer facets. As previously noted, the eyes have degenerated in specimens of N. laticanda only 10 mm . in length. A young example of N. wacleayii, 3.45 mm . in length, taken from the marsupium of the mother, is illustrated at k, fig. 4 ; the endopod of the uropods is wider and shorter than the exopod, and is somewhat roundly subtrumeate posteriorly.

Nerocila australasiafi, Sehioedte and Meinert.

Nerocila uustralasiae, Scl. and Mein., Naturh. Tidsskr., (3) xiii., 1881, p. 35, pl. vi., ligs. $7,8$.

I have seen no specimens agreeing with the deseription of this species, which is evidently very closely allied to N. macleayii. Aecording to the authors' figures of their single specimen, the posterior angles of all the peraeon segments are more or less produced backwards (although the angles of the seeond segment are apparently not at all prominent) and the endopod of the uropods is of different shape.

Length. 29 mm .
Hab.--Tasmania: "Hobarttown."
Nerocila serra, Schioedte and Meinert.
Nerocila serra, Sch. and Mein., Naturh. Tidsskr., (3) xiii., 1881, p. 17, pl. i., figs. 12-14; Vierstrasz, Zool. Mede1, i., 1915, p. 74; Barnard, Ann. S. Afr. Mus., xx., 1925, p. 392.

ㅇ. Ovigerous. About twice as long as wide. Surface glabrous, with tiny and rather sparse panctures. Cephaton wider than medianly long, with anterior margin rounded and somewhat angular in the middle; posterior margin very distinctly trilobate; eyes small but distinct. First antemae a litie shorter and stonter than second, composed of eight articles; sceond antennac not reaching to middie of length of first peracon segment, composed of nine articks. First
(5) Chilton, Trans. N. Z'd. Inst., xxiii., 1801, pl. xi., fig. 2.
article of palp of mandibles stouter and a little longer than sccond, which is distinctly longer than thircl. Peraeon widest at fifth segment; medial length of first segment a little greater than that of second to fourth segments, and subequal in length to fifth to seventh segments. Postero-lateral portions of all segments produced backwards and a little ontwards, with the postcrior angles acute; posterior angles of seventh segment reaching back almost to level of postcrior angles of third pleon segment. Coxal plates well developed, falcatc, all visible in dorsal view, the hinder pairs prominent; plates of second to fifth segments not or scarccly reaching beyond the posterior angles of their segments; those of sixth and seventh segments distinctly longer than their segments, the acute apices of the seventh plates reaching almost to level of posterior angles of fifth pleon segment. First five pleon scgments subequal in length; pleural parts of first and

Fig. 6.
Nerocila serra. Adult malc phase: a and b, dorsal and lateral views ($2 \frac{2}{3}$ diam.) ; c, antennae (6 diam.) ; d, palp of mandible (19 diam.) ; c and f, first and second maxillac 19 diam.) ; y, maxilliped (19 diann.); h and i, first and seventh peracopods (6 diam.) ; j, second pleopod (6 diam.); k, uropod (6 diam.). l, Uropod of ovigerous female (6 diam.). m and n. Second pleopod and uropod of immature example (6 diam.).
second segments produced, narrow and apically acute, those of the second segment reaching back to posterior angles of fifth segment; telsonic segment sub)cordate, with an obsolete median carina; basal width equal to medial length; postero-lateral margins very finely serrate. Endopod of uropods reaching beyond apex of telson, shorter and wider than exopod, with inner margin, and proximal part of onter margin, slightly convex, and with inner and outer postcrior margins, coarscly and conspicuously serrate; exopod falcatc. Peraeopods moderately stout, successively increasing in length; seventh pair with five stout spines (two of which are shorter than the others) on inner margin of merus, five spines on inner margin of carpus, and eight or nine on inner margin of propodus.

Colour in alcohol: Dorsum yellowish with a blackish median stripe for whole length of animal, and with a blackish stripe on each side of pcraeon and first five segments of pleon. Underside and peraeopods pale.

Length, 20 mm .
Loc-Queensland: Great Palm Island, from Lutianus sp. (Dr. W. E. J. Paradice), Brisbane (J, D. Ogilby), Cairns (A. M. Lea).

Hab.-Malay Archipelago, South Africa (Barnard), and Queensland.
The marsupium of the female described above is filled with ova. As the ovigerous female is illustrated by Schioedte and Mcinert, I have here figured an example, 22 mm , in length, in the adult malc phase. This specimen differs from the ovigerous famale in being of narrower form, in not having the posterior angles of the peracon segments so much backwardly produced, and in having the last pair of coxal plates shorter, but nevertheless reaching beyond the posterior angles of the seventh peracon segment. The pleural portions of the first and second pleon segments are not so greatly produced and the general colouration of the dorsum is darker, so that the median and latcral stripes are not prominent.

An immature specimen 16.5 mm . in length is still more slcnder in form, the eyes are degenerate (but are larger than in adult examples), the antennae reach back almost to the hinder margin of the first peraeon segment, and the posterior angles of only the first, sixth, and seventh peraeon segments are backwardly produced, and these but slightly; the coxal plates are less developed, but the last pair reach beyond the posterior angles of their segment. The right uropod is abnormal. but the left is much as in the adult, excepting that the serrations, while distinct. are not nearly as conspicuous (fig. $6, n$). As in N. laticauda and N. macleayii, the malc appendage of the second plcopods is relativcly longer in the young than in large spccimens (fig. $6, j$ and m). The postero-lateral borders of the telson are minutely scrate in ail examples examined.

The type female figurcd by Schioedte and Meincrt (22 mm . in length) apparently has the endopod of the uropods relatively narrower than in the Queensland specimens.

> Anilocra, Leach.

Anilocra, Leach, Dict. Sci. Nat., xii., 1818, pp. 348, 350 ; Sch. and Mein., Naturh. Tidsskr., (3) xiii., 1881, p. 100 ; Stebb., Herdman's Pearl Fish., Ceylon, Suppl. Rep., xxiii, 1905, p. 25 (syn.) ; 'Rich., Bull. U.S. Nat. Mus., liv., 1905, p. 226.

The posterior margin of the cephalon is irilobate, but not prominently so. The posterior angles of the second to sixth peracon segments are ncver produced (but are often produced in the preceding genns). The peraeon is rather thick and compact, the coxal plates of the fourth to seventh segments are somewhat small and do not nearly reach to the posterior angles of their segments.

Anilocra cavicalda, Richardson.
Anilocra cazicanda, Rich., Wasl. Bur. Fish., Doc. 735, 1910, p. 18, fig. 17.
ㅇ. Ovigerous. Surfacc smooth, with a few scattered punctures. Cephaton much wider than medianly long, narrowed in front of eyes and with anterior margin roundly subtruncate and downbent. Eyes rather large, oval, compositc; widely separatcd and situate at postero-lateral portions of cephalon. First antennae stouter than, and about two-thirds as long as, second antennae; composed of cight articles and slightly geniculate at articulation of third and fourth articles. Second antennae reaching back to hinder margin of first peraeon segment and composed of ten articles. Peraeon widest at fifth segment; first segment longer than second or third, but shorter than any of the other segments; second to fifth segments successively increasing in length, the sixth being more than threc times as long as the second scgment; seventh segment subcqual in length to fourth. None of coxal plates carinate; those of second and third seg-
ments subquadrate in shape, reaching to level of posterior angles of their segments ; those of fourth to seventh segments curved, narrower than first two pairs and with their postcrior apices far removed from the hinder angles of their respective segments. Sides of pleon converging from first to fifth segments, which are subequal in length; fifth segment scarcely more than two-thirds as wide as first segment; surface of sides of third to fifth scgments concave; postero-lateral margins of fifth segment concavely incised; telsonic segment not much longer than wide, with an obsolete, longitudinal, median carina; lateral n11argins rounded and postcro-lateral margins almost straight, abruptly converging to the narrowly subtruncate apex; basal portion tumid and sides upturned, so that the dorsum of the telson is scoop-shaped. Uropods reaching to level of apex of telson; endopod suboval, subequal in length to, but wider than, exopod, which has the imner margin almost straight and the outer margin curved. Peraeopods successively increasing in length, with dactyli of first four pairs slightly swollen in the middle of their length; seventh pair with minute spinules on inner margin of some of the joints.

Fig. 7.
Anilocra cavicauda. Ovigerous female: a and b, dorsal and lateral vicws ($2 \frac{1}{3}$ diam.) ; c, antennae (6 diam.) ; d and e, first and second maxillae (19 diam.) ; f, maxilliped (19 diam.) ; g and h, first and seventh peracopods (6 diam.) ; i, uropod' (6 diam.).
Colour in alcohol : Dorsum yellow, thickly dotted with brown chromatophores, so that the animal appears of an olivaceous colour.

Length, 26 mm .
Loc-Queensland: Port Denison (E. H. Rainford).
Hab.- Philippine Islands and Queensland.
Two ovigerous females were collected by Mr. Rainford, who is responsible for the following interesting observation concerning the habit of this species:"Found attacking side of occiput of rainbow fish (Pentapus setosus). Attached by the mouth, the parasites infest about 75 per cent. of this species of fish, always in the same position." As A. caricauda was previously known from a single female, it is mortunate that a larger scries of specimens was not taken.

The second female before mc is 21.5 mm . in length; in this the telson is more elongate than in the example described above, and has the postero-lateral margins slightly sinuatc. In both specimens the lateral parts of the rami of the first threc pairs of pleopods project beyond the sides of the rather narrow pleon; chromatophores are present on the edges of the projecting portions of the pleopods.

Richardson's type is of larger size and narrower form (36 mm . in length and 10 mm . in width), and has the telsonie segment mueh more elongate (9 mm . in length and 5 mm . in width) than in the Australian specimens. In these last the exopod of the uropods is very slightly longer than the endopod (a reverse condition to that obtaining in the type) and the antennae are, apparently, less markedly geniculate. Richardson says that the daetyli of the first four pairs of peraeopods are "inflated in the centre," but in the speeimens now deseribed this inflation is very slight. The salient feature of A. canicauda is the concave dorsum of the telson.
A. cavicauda is widely separated from the New Caledonian species, A. australis, Sehioedte and Mcinert. ${ }^{(6)}$ In the last-named the exopod of the uropods is much longer than the endopod, while the Danish authors place it in a section of their key inelucling forms which have the antennae straight and the eoxal plates of the fourth to seventh segments carinate.

> Crmoturd, Fabricius.

Cymothoa, Fabr., Entomol. Syst., ii., 1793, p. 503; Sch. and Meill, Naturh. Tilsskr., (3) xiv., 1884, p. 223 ; Ricl., Bull. U.S. Nat. Mus., liv., 1005, p. 247.

The cephalon is more or less inmersed, but the hinder margin is not trilobate; the first pair of antennae are widely separated basally, and are not expanded. The first peraeon segment has the anterior margin slightly eoncave or sinuate and the antero-lateral angles more or less prominently forwardly produced. The coxal plates are rather thiek and prominent. The pleon is abruptly narrower than the peracon and is deeply immersed. The basos of the posterior peraeopods is expanded.

Key to Australian Species.

a. Antero-lateral angles of first peracon segment not reaching to, or scarcely passing, level of middle of cephalon.
b. Anterior margin of cephalon rounded indica
bb. Anterior margin of cephalon widely truncate $\quad . \quad$.. .. limbata
aa. Antero-lateral angles of first peraeon segment reaching to level of
four-fifths of length of cephalon vicina
Chmothon indica, Schioedte and Meinert.
Cymothoa indica, Sch. and Mein., Naturh. Tiddskr., (3) xiv., 1884, p. 250, pl. viii., figs. 1-4.
9. Ovigerous. Form subovate, a litle more than twice as long as greatest width. Cephalon subtriangular, about one-third wider than medianly long, with apex very narrowly subtruncate. Eyes obscure. First pair of antennac stouter than and subequal in length to seeond; eomposed of eight articles; second antennae reaching to hinder angles of eephalon, eomposed of nine articles. Second artiele of palp of mandibles a little more than twice as long as third. Peraeon widest at fourth and fifth segments, first segment much longer than any of the others, its medial length nearly equal to that of the last three segments together ; anterolateral angles not reaching forward to middle of length of eephalon; anterior margin concave, towards the sides a little sinuate, and posterior margin widely sinuate; second, third. and fourth segments subequal in length; tifth shorter than fourth and longer than sixth or seventh segment; posterior angles of all segments rounded and slightly produced ontwards and downwards. Coxal plates with posterior margins nearly straight or slightly ineised, not reaehing quite to the posterior angles of their respective segments. First three segments of pleon subequal in length and width; fourth segment a little wider but no longer than third, and fifth wider, and longer than fourth; telsonie segment twiee as wide as long, wider than fifth pleon segment ; postero-lateral angles rounded and posterior margin sinuate; disc with a
${ }^{(6)}$ Sch. and Mein., Naturh. Tidsskr., (3) xiii., 1881, p. 120, pl. viii., fig. 11.
median longitudinal sulcus. Uropods reaching almost to level of hinder margin of telson; rami subequal in length, narrow, curved, and apically rounded. Peracopols strong, suceessively increasing in length; carina of last four pairs pronounced, the basos of the seventh peraeopods being only about one-third longer than wide.

Colour in alcohol: Brown, becoming paler posteriorly.
Length, 29 mm .
Loc--Western Australia: Bernicr 1sland (W. Austr. Mus. (oll.). North"western Australia (Capt. Walcott). Queensland: N.W. Islet. Capricorn Group, "from pectoral fin of Mugil" (G. P. Whitley) ; Port Denison, Bowen, "from mouth of whiting" (E. H. Rainford).

Hab.-India, North-western and North-eastern Anstralia.
1 am greatly indebted to Mr. E. H. Rainford for a fine series of specimens from Queensland.

Fig. 8.
Cymothoa indica. Ovigerous female: a and b, dorsal and lateral views ($1 \frac{3}{4}$ diam.) ; c, antennae (9 diam.) ; d, palp of mandible (29 diam.) ; e and j, first and second maxillac (20 diam.) ; g and h, first and seventh peraeopods (4 diam.); i, first pleopod (4 cliam.). Adult make phase: j, maxilliped (29 diam.) ; k, second pleopod (4 diam.).

An example 20 mm . in length, in the adult male phase, has the cephalon almost as long as its basal width, the greater part of the first pleorr segment hidden beneath the last peraeon segment, and the telsonic segment relatively longer than in the ovigerous female; also the coxal plates are a little longer, those of the second, third, and fourth peraeon segments reaching quite to the posterior angles of these segments. The male appendage is long and tapering, and exceeds the rami of the second pleopods in length. Schioedte and Meinert examined two specimens, an ovigerous female 20 mm . in length and one "mas adultus" only 9 mm . in length. A small male (10 mm . in length) from Queerisland is very like the last-named example.

Cymothoa limbata, Schioedte and Meinert.
Cymothoa limbata, Sch. and Mein., Naturh. Tidsskr., (3) xiv., 1884, p. 250, pl. vii., figs. 1, 2. C. limbata and C. indica are both included by the Danish authors in Section ii. of their "Conspectus systematicus specierum"; (7) this section contains forms which have the antero-lateral angles of the first peraeon scgment nearly reaching or slightly passing the level of the middle of the length of the cephalon. C. limbata differs from C. indica in that the anterior margin of the cephalon is truncate. The telsonic segment is distinctly longer than the remaining segments of the plcon together. I have not seen this species, which is described from a single "virgo." Length, 17 mm . Hab.-Queensland: Cape York.

Cymothoa vicina, 11. sp.

ㅇ. Ovigerous. Form suboval, a little more than twice as long as greatest width. Cephalon subtriangular, nearly half as wide again as medially long; anteriorly with a short, longitudinal, median sulcus; with lateral margins slightly sinuatc and anterior margin very narrowly subtruncate, Eyes distinct, rather

Fig. 9. Cymothoa ricina, type ovigerous female: a and b, dorsal and lateral views (23 diam.) ; c. antennae (9 diam.) ; d, mandible (20 diam.) ; c and f, first and seventh peracopods (5 diam.); g, second pleopod (5 diam.). h, , Cephalon and first pcracon segment of ovigerous female of C. stromatei (2 diam .).
small. First pair of antennae stouter than and subequal in length to second pair; composed of eight articles; second antennac reaching to hinder angles of cephalon, composed of nine articles. Second article of palp of mandibles scarcely more than twice as long as the third. Peracon widest at third and fourth segments; first segment longer than any of the others, its medial length equal to that of the fifth and sixth scgments together; antcro-lateral angles reaching to level of fourfifths of length of cephalon; anterior margin sinuate and posterior margin very slightly sinuate; second, third, and fourth segments successively increasing slightly in length; fifth abruptly shorter, equal in length to sixth; seventh seginent shortest ; posterior angles of all segments obtusely rounded, scarcely at all produced. Coxal plates with posterior margins rounded, not reaching to level of hinder angles of their respective segments. First four segments of pleon subequal in length and width; fifth longer and wider; telsonic segment twice as wide as long, a little wider than fifth segment, with postero-lateral and hinder margins
(7) Sch. and Mein., Naturh. Tidsskr., (3) xiv., 1884, pp. 225, 226.
rounded. Uropods reaching to level oí apex of telson, with both branches curved and narrowly rounded apically; exopod longer and a little wider than endopod. Peracopods strong, successively increasing in length backwards; carina of last four pairs moderately produced, the basos of the seventh peraeopods being half as long again as wide.

Colour in alcohol: Dark yellow.
Length, 19 mm .
Loc.--New South Wales: Tweed River, from a mulet (Franks). Type in Australian Museum, Reg. No. P8590.

The male appendage of the second pleopods is retained in the single ovigerous fomale before me (fig. 9, g). This specics belongs to Scction iii. of the key given by Schioedte and Meinert (C. stroniatei, C. ofstrum, etc.). but differs from the species placed there by these authors in not having the anterior margin of the cephalon broadly truncate or concave. In the accompanying figure the cophalon of a specimen of C. stromatei from New Guinea is shown for comparison.

Livoners, Leach.

Livoneca, Leach, Dict. Sci. Nat., xii., 1818, p. 551; Sch. and Mein, Naturh. Tidsskr., (3) xiv., 1884, p. 340; Barn., Ann. S. Afr. Mus., xvii., 1920, p. 357 (syn.).

Cephalon more or less immersed. First pair of antcnnae not expanded but rather compressed; widely separated at the basc. First peracon segment abrupily longer than second (in which case the seventh segment is abruptly shorter than sixih) or subequal in length to other segments. Coval plates rarely wide. Peracopods subequal in length or successively increasing slightly in length backwards; carina of basos of last four pairs more or less prominent. Pleon rarely strongly immersed in peraeon.

Key to Ausitralian Species.

a. Front of cephalon not widely subtruncate; second antennae much longer than first
aa. Front of cophalon widely subtruncate; second antennae not longer than first
raynaudii
furgidula
Livoneca raynaudif, Milne Edwards.
Lironcca raynandii. M. Edw, Hist. Nat. Crust., iii., 1840, p, 262 ; Sclı. and Mein., Naturh. Tidsskr., (3) xiv., 1884, p. 367, pl. xv., figs. 9-13; Whitelegge, Mem. Austr. Mus., ;v., 1901 p. 236: Stelb., Ann. S. Afr. Mus., vi., 1910, p. 425 ; Thiclemann, München Abh. Akad. Wiss.. ii., Suppl. 3, 1911, p. 42; Barn., Ann, S. Afr. Mus., xvii, 1920, p. 358; Chilton, Rec. Cant. Mus., i., 1911, p. 309, and Trans. N. Z'd. Tnst., xliv., 1912, p. 135.

Lironcca novaí-noalandiac, Micrs, Anm. Mag. Nat. Hist., (4) xvii, 1876, p. 228, and Cat. Crust. N. Z'd., 1876, p. 106, pl. iii., fig. 2.

Lizoncea stezetrti, Filhol., Mission d'Ile Campbell, iii., 1885, y. 450, pl. lv., fig. 6.
9. Ovigerous. Form suboval, about one and three-fourths times as long as wide. Ccphalon immersed in first peraeon segment, subpentagonal in shape, slightly wider than medial length; front suddenly narrowed near apex. which is rounded ; dorsum shallowly excavate. Fyes rather small, suboval. First antcnnae composed of eight articles; second antennac onc-half as long again as first, composed of twelve articles. First article of palp of mandibles a little longer than second and third together; second much longer than third article, which bears a fcw setae near and at apcx. Peraeon moderately convex; first segment slightly longer than the others, which are subcqual in length. Coxal plates of second to fifth segments subpendulous, of sixth ard seventh continued almost in same plate as their segments; plates of second and third segments almost or quite reaching to postcro-lateral angles of their segments, and remaining plates not attaining hinder angles of their segments. First pleon segment partly concealed beneath last peraeon segment ; second to fiftlo segments subcqual
in width, the fifth a little longer than second to fourth, which are suberfual in length; telsonie segment a little less than twiee as wide as medial length, with hinder margin semicircular, and with an obsolete, median earina on basal half of dorsum. Uropods not reaehing mueh beyond level of middle of length of telsonie segment; both branehes suboval and slightly tapering, the exopod a little larger than the endopod. Peraeopods rather stout, suecessively inereasing in length baekwards; basos of first threc pairs with a low earina; basos of last four pairs with a carina, which is somewhat prominently produced near the proximal end. Pleopods successively decreasing in size baekwards, the outer ramus of each longer and much wider than the inner.

Colour in aleohol: Yellow.
Length, 38 mm .

Fig. 10.
Livoneca raynaudii. Ovigerous female: a and b, dorsal and lateral views ($1 \frac{1}{3}$ diam.) ; c, antennac ($6 \frac{1}{2}$ diam.) ; d, palp of mandible (10 diam.) ; e and f, first and second maxillae (10 diam.) ; e^{\prime} apex of first maxilla (42 diam.) ; g, maxilliped ($6 \frac{1}{2}$ diam.) ; h and i, first and seventh peracopods ($3 \frac{1}{2}$ diam.) $; j$, abnormal telsonie segment of another specimen ($1 ;$ diam.).
A. Differs from the ovigerous female as follows:-Antennae relatively a little longer (but composed of the same number of articles), peraeopods more slender and form narrower, about two and one-third times longer than wide. All coxal plates reaching nearly or quite to level of hinder angles of their scgments. Telson a little longer in proportion to its width and more triangular in shape. Male appendage of seeond pleopods not mueh shorter than large outer ramus. Branehes of uropods with a few short hairs on inner and apical margins; exopod longer than endopod, sometimes reaching to level of apex of pleon.

Length, $17 \cdot 5-19 \mathrm{~mm}$.
Loc.-New South Wales: Sydney (Raphael), off Cape Three Points, Jibbon, Wata Mooli, and Coogee, 32-78 faths. ("Thetis" Exper.), Terrigal (D. G. Stead), off Botany Bay, 33-56 faths. (C. W. Mulvey, F. A. MeNeill. and A. Livingstone), Port Jackson, 65-75 faths., from Zeas faber and a Seorpaenid, and oft Green Cape, $30-40$ faths., from a flathead (W. Boardman and G. P. Whitley). South Australia: Port Adelaide (S. Austr. Mus. Coll.). Tasmania (A. M. Lea).

Hab.-South Africa. Japan, Australia, and Ncw Zealand.

This species is apparently not subject to very great distortion; some specimens are quite symmetrical, others are curved slightly to the left, others to the right. The front of the cephalon may be very narrowly subtruncate, and not or scarcely constricted near the apcx. All the coxal plates may extend back to the level of the postero-lateral angles of their respective segments.

The telsonic segment of an abnormal female is shown at j, fig. 10 ; the right uropod is normal, but on the left, and damaged, side two uropods (one of which is uniramous) have been developed.

As remarked by Chilton I. epincrias, Rich, ${ }^{(8)}$ from Japan, is apparently very close to L. raynaudii.

Livoneca turgidula, n. sp.
ㅇ. Form somewhat ovate, about twice as long as greatest width. Cephalon not deeply immersed in first peraeon segment, slightly bert downwards anteriorly, and a little longer than basal width; lateral margins concave and front truncate, very slightly convex; dorsum with two shallow, adjoining foveae. Eyes small, suboval, situate at postero-lateral angles of ccphalon. Antennae short, composed of eight articles in both pairs; second pair more slender and a little shorter than first. First article of palp of mandibles as long as second and third together;

on each side of carina. Uropods reaching to level of hinder margin of telson, with branches suboval in shape and subequal in length; endopod a little wider than exopod. Peracopods moderately stout, successively increasing in length; basos of each with a low but distinct carina. Plcopods successively decreasing in size backwards, the outer ramus much wider and longer than inner in the first two pairs, less markedly wider and longer in the threc posterior pairs.

Length, 16.5 mm .
©. Less robust than the female, about two and one-half times as long as greatest width. Male appendage of second pleopods as long as rami.

Length, 10.5 mm .
Loc.-Wcstern Australia: Fremantle (type locality) and Cottesloe (L. Glauert). Type, female, and allotype, male, in W. Austr. Mus., Reg. Nos. 10034 and 11126 .

This species resembles L. philippinensis, Rich., ${ }^{(9)}$ in the small size, the short antennae, and the irregular lengths of the peraeon segments. Richardson's species differs, however, in having the cephalon wider than long and rounded in front, the telson of different shape, etc.

Irona, Schiocdte and Meinert.

Irona, Sch. and Mein., Naturh. Tidsskr., (3) xiv., 1884, p. 381 ; Stebb., Herdmans Ceylon Pearl Fish., Suppl. xxiii., 1905, p. 27 ; Rich., Bull. U.S. Nat. Mus., liv., 1905, p. 265.

Front of cephalon rather broadly rounded. First segment of peraeon sublunate, longer than the second. Posterior coxal plates usually wide or rather wide. Carina of basos of last four pairs of peraeopods obsolcte. Pleon usually strongly immersed in the peraeor, the first segment wholly or for the greater part covered by the last peraeon segment.

Irona is closc to Lizoneca, but one or more of the above somewhat inconstant characters scrve to distinguish the females of the species of the genus. No spccies has been previously noted from Australian coasts, but at least the two following occur:-

Key to Australian Species,
a. Coxal plates thick, comparatively narrow, convex fore and aft, and trans-
versely. Eyes moderately large. Peraeopods stout renardi
ua. Coxal plates thin, wide, and flat. Eyes larger. Peracopods more slender melanosticta
Iroña renardi, Bleeker.
Livoncca renardi, Bleek., Acta. Soc. Scient. Indo-Neerland., ii., 1857, p. 28, pl. i., fig. 8.
Lironeca renardi, Miers, Ann. Mag. Nat. Hist., (5) v., 1880, p. 465.
Irona renardi, Sch. and Mein., Naturh. Tidsskr., (3) xiv., 1884, p. 383, pl. xvi.. figs. 10, 11.
ㅇ. Ovigerous. Form irregularly subovate, twice as long as greatest width. Cephalon strongly immerscd in first peracon scgment, suborbiculate, about one-third wider than medial length, and with front obtuse. Eyes moderately large. Labrim about one-fourth wider than long; slightly emarginatc. Antennae short, the first pair stouter than second; both composed of seven articles. Oral appendages stout. First article of palp of mandibles equal to second and third together; third article short. Basipodite of maxillipeds twicc as long as greatest width. Peraeon transversely convex, widest at second and third segments; first segment sublunate, much longer than any of the others, with posterior margin sinnatc towards sides; antero-lateral angles narrowly rounded and reaching almost to level of anterior margins of eyes; second segment longer than third, which is longer than the four posterior segments, which are subequal in length. Coxal plates thick, not very wide, convex transversely and fore and aft; first

[^2]two pairs not reaching to hinder angles of their segments, and last four pairs extending to the posterior angles of their segments; plates of second to fourth segments actutely rounded posteriorly, of fifth to seventh segments obtusely rounded. Plcon deeply immersed in peraeon, which covers the first two segments (the lateral parts of which are, however, visible in lateral view) ; lateral margins short, almost straight or slightly incised; telsonic segment rounded, not much wider than medial lcngth, as wide as fourth pleon segment; dorsum marked with faint pits. Uropods reaching well beyond apex of pleon; both rami long and narrow, curved or a little sinuate, the endopod shorter and narrower than the

Fig. 12.
Irona renardi. Male: a, dorsal vicuv ($2 \frac{1}{2}$ diam.) ; b, second pleopod (4 diam.). Ovigerous female: c and d, dorsal and lateral views (13 diam.) ; e, cephaton ($5 \frac{1}{3}$ diam.) ; f, labrum (10 diam.); g, antennae (22 diam.) ; h and i, first and second maxillae (14 diam.) ; j, maxilliped (11 diam.) ; k and l, first and seventh peraeopods (4 diam .). m, Dorsal vicw of another female ($2 \frac{1}{6}$ diam.).
exopod. Peracopods stout, successively increasing in length backwards; dactyli strong; seventh peraeopods a little longer than sixth.

Colour in alcohol: White with small chromatophores on the telson, uropods, and pleopods.

Length, 29 mm .
d. The form is subovate and is more slender (two and one-half times longer than wide) and more symmetrical, and the cophalon is relatively larger than in the ovigerous female. First antennae composed of eight articles, the second of nine. J'eraeon widest at third segment; first segment longest, with
antero-lateral angles subacute, reaching to level of middle of length of eyes. Coxal plates of second to fourth segments subtruncate posteriorly, of fifth to seventh segments obtuscly rounded. All seginents of pleon visible in dorsal view. Male appendage of second pleopods not nearly reaching to end of rami.

Colour: Whitish, closcly dotted with small chromatophores, which are most distinet posteriorly.

Length, 19 mm .
Loc--New South Wales: Georges River, Botany Bay (J. H. Wright), under gill-cover of Tylosurus forox (D. G. Stead), Port Jackson, and Camden Haven, under gill-cover of Tylosurus macleavana (Austr. Mus. Coll.). Queenstand: Townsville, from Tylosurus sp. (Dr. W. E. J. Paradice). Western Australia : Fremantle (W. Austr. Mus. Coll.).

Hab.-India, Philippine Islands and Australia (? Batavia-Blecker).
The male and female described and illustrated above were taken together at Sans Souci, Georges River; a second ovigerous female, $24 \cdot 5 \mathrm{~mm}$. in length, from Queensland, is shown at m, fig. 12. In females which are curved to the left the pleon is tilted to the right, and on this side is more or less overlapped by the postero-lateral portion of the peracon; a reverse condition obtains in specimens curved to the right. At least the first pleon segment is concealed bencath the peraeon in the ovigerous female; the peracon is not consistently subovate, and in one example it is suboval.

Three males which, apparently, should be referred to this species were taken from Tylosurus macleayana in New South Wales. The smallest of these is 16.5 mm . in length, is three times as long as wide, and has the telson elongate, longer than wide; both branches of the uropods are ciliate, and the exopod is slightly longer and narrower than the suboval endopod. A second specimen is $17 \cdot 5 \mathrm{~mm}$. in length, and is little more than two and onc-half times as long as wide; the telson is scarcely wider than long, and the uropods are more as in the male described in detail above, but are relatively shorter. The third example is 23 mm . in length; the male appendage of the second pleopods is much shorter than the rami.

Irona melanosticta, Schioedte and Meinert.

Irona melanosticta, Sch. and Meil., Naturh. Tidsskr., (3) xiv., 1884, p. 388, pl. xvii., figs. 3-5; Thiclemann, München Abh. Akad., Wiss., ii., Suppl. 3, 1911, p. 45, pl. ii., figs. 28, 29; Barn., Ann. S. Afr. Mus., x., 1914, p. 373.
9. Ovigcrous. Form irregularly suboval, twice as long as greatest width. Cephalon immersed in first peraeon segment, suborbiculate, wider than long, with front obtuse. Eyes large. Labrum slightly cmarginate. First antennae much stouter than second, composed of cight articles; second pair composed of nine articles. Oral appendages rather slender. First and second articles of palp of mandibles subequal in length, each two and three-fourths as long as third. Basipodite of maxillipeds two and one-half times longer than greatest width. Peraeon slightly convex transversely, widest at fourth segment; first segment sublunate, as long as the third, and a little longer than second segment, with posterior margin a little sinuate towards sides; antero-lateral angles rounded, reaching to level of eyes; four posterior segments successively decreasing in length backwards. Coxal plates wide and rather thin, slightly convex fore and aft, and continued quite or nearly in the same plane as their segments; plates of second segment reaching to postero-lateral angles of their segment and remaining plates extending distinetly beyond hinder angles of their segments; first three pairs with outer margins more or less sinuate and posterior apices rounded; last three pairs with outer margins convex and apices rather narrowly rounded; plates of third and fourth segments longer than the others. Pleon immersed in peracon, the first segment not wholly concealed; first four segments subequal in length, fifth
a little longer; lateral margiin of anterior five segments rounded; posterior portion of telson membranaceous, with shallow pits, the hinder margin irregular; the greater part of the telsonic segment is more strongly chitinized than the hinder portion; this firm portion is twice as wide as medianly long, semicircular in shape

Fig. 13.
Irona melanosticta. Male: a, dorsal vicw ($3 \frac{1}{2}$ diain.) ; b, second pleopod (6 diam.). Ovigerous female: c, dorsal view (3 diam.) ; d, cephalon ($8 \frac{1}{2}$ diam.) ; e. antennae (21 diam.) ; f and g, first and second maxillae (21 diam.) ; h, maxilliped (21 diam.) ; i, j, and k, first, sixth, and seventh peracopods (6 diam.). l, n, n, and o, Dorsal views of other ovigerous females (2 to $3 \frac{1}{2}$ diam.). p, Cephalon of ovigerous female ($8 \frac{1}{2}$ diam.) q, Dorsal view of another male ($4 \frac{3}{4}$ diam.).
posteriorly, and faintly pitted. Left uropod abnormal, with rami rather short and subequal in length; right uropod reaching well beyond apex of pleon, both branches thin and narrow, the exopod very slightly sintuate and longer and slightly wider than cndopod. Peraeopods moderately stout, successively increasing in length backwards to the fifth pair; scventh peraeopods not longer than sixth.

Colour in alcohol: Brownish, paler on telson.
Length, 17 mm .
0. The form is subovate and is more s!ender (two and three-fourths times as long as greatest width) and more symmetrical, and the cephalon is relatively larger than in the ovigerous female. First antennac composed of eight, and second of nine articles. Peraeon widest at third segrnent; first segment longest, with antero-lateral angles rounded and not very produced. Coxal plates of sceond and third segments obtuse posteriorly, larger than the remaining pairs, which are narrowly rounded posteriorly; telsonic segment a little wider than medial length, posterior margin rounded and dorsum shallowly pitted and with a low median carina. Male appendage of second pleopods reaching to level of apex of inner rannus. Both rami of uropods reaching well beyond apex of pleon, the exopod longer and wider than the endopod.

Fig. 14.
Irona melanosticta. Dorsal and ventral views oi abnormal plem of ovigerous female; ploopods removed (5 diam.).

Colour: Brownish, paler on telson.
Length, 14 mm .
Loc.-South Australia: Port Victor (Bradley), Gulf St. Vincent, and Port Adelaide (S. Austr. Mus. Coll.).

Hab.-Japan, Sandwich Islands, Australia, and South Africa.
The coxal plates of the ovigerous female of this species are very different from those of I. renardi. Eighteen specimens, all taken from beneath the gillcovers of garfish (Hyporhanphus intermedins), are before me; the largest female is 25 mm . in length. The "long toms" (Tylosurus, from which some specimens of the preceding spccies were taken) do not occur in South Australia, but Thielcmann notes that I. melunosticla is found on "Belone sp." in Japan, and Barnard records it from "Tylosurus choram" in South Africa.

The cephalon is somewhat variable in shape and may be apically obtuse or (rarely) somewhat triangilar, with the antero-lateral margins sinnate (fig. 13, p). The form may be relatively much wider than in the examples described above owing to greater distortion or "telescoping" of the segments of the peraeon, as in the male shown at q, and in the ovigerous females at l, m, and o. The coxal plates are variable in size and shape, but are always thin and nearly flat; more or less of the postero-lateral part of each is softer and somewhat thicker than the rest,
but in dried examples this fleshy portion shrinks and becomes thin and membranaceous. In some specimens the plcon is far more deeply immersed in the peraeon than in others (cf. females n and o). The hinder margin of the membranaceous posterior part of the tclson of the ovigerous female is almost always irregular, but the more strongly chitinized, semicircular basal part is consistently about twice as wide as long, as in the example figured by Schiocdte and Meinert. In this sex the uropods are commonly abnormal on one side or the other (sometimes on both sides), but the uropods of the male, and normal uropods of the female, are as described by Barnard.

Onc much distorted ovigerous femalc presents an abnormality of some interest. This example is curved to the left, and the pleon (fig. 14) consists of only four scparate segments, the fourth and fifth being fised with the telsonic seginent, so that the last two pairs of pleopods are attached to the underside of the enlarged "telson." The first three segments are twisted but distinct, and the fourth is represented by a short lateral piece on the right side. The lateral portions of the anterior margin of the telsonic segment are decurved. Uropods are wholly absent.

Cobonophilus, Haswell.

Codonophilus, Hasw., Proc. Lim. Soc. N.S. Wales, v., 1881, p. 471, and Cat. Austr. Crust., 1882, p. 283.

Ceratothoa, Sclı, and Mein., Naturh. Tidsskr., (3) xiii., 1883, p. 322 (nec Dana, 1853).
Meinertia, Stchb., Hist. of Crust., 1893, p. 354, and Mar. Invest. S. Afr., i., 1900, p. 57, and Ann. S. Afr. Mus., vi., 1910, p. 424.

The cephalon is more or less immersed, but its hinder margin is not trilobate. The first pair of antennae are expanded and are basally contiguous. The first peraeon segment has the anterior margin almost straight, or more or less strongly bisinuate, and the antero-lateral angles forwardly produced. The coxal plates are thick and prominent. The pleon is immersed in the peraeon. The first thrce pairs of peracopods are shorter than the others; the basos of the posterior peraeopods is expanded.

As before, the generic diagnosis applies to the mature adults. As noted below, Haswell's Codonophilus was founded upon an immature specimen of Fabricius' Cymothoa imbricata. Unfortunatcly, Haswell's genus antedates Meinertia of Stebbing, so that the species referred to the last-named genus must now be transferred to Codonophilus.

Cononophilus imbricatus, Fabricius.

Oniscus imbricatus, Fabr., Mantissa Tnsect., i., 1787, p. 241.
Cymothoa imbricata, Fabr., Entom. Syst., ii., 1793, p. 503, and Suppl., 1798, p. 304.
Cymothoa banksii, Lcach, Dict. Sci. Nat., xii., 1818. p. 353; M. Edw., ITist. Nat. Crust., iii., 1840, p. 273; Krauss, Die Südafrikanischeı Crust., 1843, p. 66 ; Heller, Reise der Novara Crust., 1868, p. 148.

Cymothoa trigonocephala, Leach, loc. cit., p. 353; M. Edw., Ann. Sci. Nat., (2) iii., 1835, pl. xiv., figs. 1, 2, and Rėgue Animal ($18399^{\text {' }), ~ p l . ~ l x v ., ~ f i g . ~ 2, ~ a n d ~ H i s t . ~ N a t . ~ C r u s t ., ~ i i i ., ~ 1840, ~}$ 1. 272.

Ceratothoa trigonocephala, Heller, loc. cit., p. 148; Thomson, Trans. N. Z'd. Inst., xi., 1879, p. 233; Miers, Ann. Mag. Nat. Hist., (5) v. 1880, p. 463; Hasw., Cat. Austr. Crust., 1882, p. 282; Sch. anc Mein., Naturh. Tidsskr., (3) xiii., 1883. p. 358, pl. xvi.. figs. 1-7.

Ceratothoa banksii, Miers, Cat. Cr1st. N. Z'd., 1876, p. 105 ; Sch. and Mein., loc. cit., p. 340, pl. xiv., figs. 6-21; Hansen, Cirolanidae, 1890, p. 68, pl. X., fig. 4.

Codonophilus argus, Hasw., Proc. Lim. Soc. N.S. Wales, v., 1881, p. 471, pl, xvi., figs. 1, $\mathrm{i} c$, and 1 g , and Cat. Austr. Crust., 1882, p. 283.

Ceratothoa imbricata, Miers, Zool. "Alert," 1884, p. 300.
Meinerio imbricata, Stcbis., Hist. of Crust.. 1893, p. 35t, and Mar. lnvest. S. Afr., i., 1900 , p. 58, and Ann. S. Afr. Mus., เi., 1910, p. 424 ; Chilton, Irans. N. Z'd. Inst., xliii., 1911, p. 567.

Meinertia trigonocephala, Thielemanu, München Abh. Akad. Wiss.. ii., Suppl. 3, 1911, p. 35, pl. i., figs. 8, 9 .

The following variation is cvident in ovigerous females:-Cephalon subtriangular, longer than wide, sometimes three-fourths as long again as basal width; apex obtuse or subacute, the front occasionally considerably narrowed; lateral margins rounded and scarcely sinuate, or emarginate. Eyes usually distinct, rhomboidal or suboval, usually with inner margins almost straight. Normally, the first antennae are composed of seven articles and the second of nine. Produced antero-lateral parts of first peraeon segment wide and apically rounded, or tapering and apically acute; anterior margin of first segment nearly straight (slightly concave or convex) or more or less bisinuate (occasionally conspicuously so). Fiith segment of pleon with hinder margin more or less distinctly trisinuate; telsonic segment about twice as wide as medial length, rarely perfectly symmetrical, with hinder margin roundcd. Normally the rami of the uropods are narrow, falcate, and subequal in length (fig. 15, i).

$M x$

Fig. 15.
Codonophilus imbricatus. Ovigerous female: a and b, dorsal and lateral views
(11 diam.) ; c, palp of mandible (8 diam.) ; d and e, first and second maxillae (8 diam.) ; f, maxilliped (6 diam.) ; f^{\prime}, palp of maxilliped (19 diam.) ; g and h, first and seventh peracopods (4 diam.). i, Uropod of a smaller female (8 'diam.). j and k, Cephalon and first peracon segment of two other examples ($1 \frac{1}{2}$ diam.).

The smallest of the ovigerous females before me is 16.5 mm . in length, the largest 49 mm . ; Stebbing states that the female attains a length of 57 mm . The ova of one of the small examples arc, approximately, 2 mm . in diameter; those of a very large female are slightly larger.

An ovigerous female 44 mm . in length is illustrated in fig. $15, a$ to h : the cephalon and first peraeon segment of two smaller specimens, taken from the tongue of a mullet, are shown at j and k.

The species has been recorded from the Indian Ocean, Java, New Zealand, Australia, and South Africa. It is moderately common in Australian waters, and there is before me a series of more than one hundred adult specimens from varions,
localities off the eastern, southern, and western coasts. In the majority of cases the host is not noted, but some labels show that the parasite occurs in the mouth or under the gill-cover of the yellow-tail (Trachurus declizis), schnapper (Pagrosomus auratus), red gurnard (Cholidonichthys kumu), blackfish (Girella tricuspidata), trevally (Caranx georgianus), and mullet (Mugil).

Miers (ut supra, 1884) compared Fabricius' type of Cymothoa imbricata with the type examples of C. trigonocephala, Leach, and states that it is probable that the last-named species is synonymous with the first; he adds that he keeps them provisionally distinct because in the type of C. trigonocephala "the head is narrower, more distinctly triangulate, with straight sides, and the anterior thoracic segment proportionately longer than is usual in C. imbricatu." Stebbing (1900) remarks on the difference in the anterior margin of the first peracon segment of the ovigerous females figured by Schioedte and Meinert; the Danish authors show this margin as conspicuously bisinuate in the femate figured by them as Ceratothoa trigonocephala and nearly straight in the female they designate C. banksii. Jn their figures of the males of the two species, however, the condition

Fig. 16.
Codonophilus imbricatus, juvenile (Haswell's type specimen of C. argus): a, dorsal view (13 diam.) ; b, antennae (39 diam.) ; c and d, first and sixth peraeopods (29 diam.) ; e, second pleopod (39 diam.) ; f, uropod (39 diam.).
appears to be reversed. In 1910 Stebbing definitely sinks Cwnothoa trigonocephala, Leach, in the synonymy of Meinertia imbricata, and notes that probably Ceratothoa trigonocephala of Schioedte and Meinert is also a synomym. The variability of the Australian specimens leaves one in no doubt concerning this last reckoning.

Advanced young taken from the brood-pouch of a female are 4 mm , to 4.6 mm . in length, and differ from the adult in having the form symmetrical, the eyes large and conspicuous, the antero-lateral angles of the first peracon segment scarcely produced, and the last peraeon segment short. Also, the inner cdge of the dactylus of the anterior peracopods is dentate, the sciventh pair of peraeopods is not developed, the telson is fringed with long, delicately plumose hairs, and the rami of the uropods are suboval in shape and fringed with long phunose hairs. Schioedte and Meinert give the lengths of the young of the first and second stage as 3.5 mm . and 3.6 mm ., respectively, under the name Ceratothoa trigonocephala, and as 4.2 mm . and 5 mm . under the name C. banksii.

The type specimen of Codonophilus argus, Hasw. (fig. 16). is 4 mm . in length (" $5 / 32$ in.") and is identical with advanced brood young of Meinertia imbricata. Haswell evidently made a superficial examination of the specimen upon which he founded his genus, for he states that the pleon has the "Terminal segment scale-like, acuminate," and that the uropods are "1tniramons . . . Ramus
falciform with a few scattered cilia." When the type specimen is lifted out of the alcohol in which it is prescrved and examined under the microscope. the wet, fringing, plumose hairs of the uropods and apical part of the transparent telson tend to converge to a point (like a wet camel-hair brush), and there is little doubt that this conveyed the impression that the telson and uropods were apically acute. Further, when the type was first examined by me the endopod of each uropod was closely overlying the exopod, and the matting of the marginal hairs held the two branches thus superimposed, producing the "uniramous" appearance; the "fcw scattcred cilia" were evidently some projecting ends of the plumes of the fringing hairs. This specimen is of importance, as it necessitates the sinking of the generic name Mcinertia, and the above rather obvious explanation is given because it is felt that it may be suspected that the example is incorrectly labelled as Haswcll's type. There is, however, no doubt on that score. Haswell figures the maxilliped and the ischium, merus, carpus, propodus, and dactylus of the right peraeopod of the first pair; when first now examined the type had only these parts missing, the basos of the first peraeopod of the right side being still attached. I have removed, stained, and mounted the parts here illustrated, and also the first and scoond maxillae. It is noted on the type label that the example was taken "Erom Crambessa mosaica, in Port Jackson, New South Wales."

It is well to recall here that Richardson ${ }^{(10)}$ remarks that Aegathoa of Danis "perhaps represents the young of Livoncca. The figure given by Schiocdte antl Meinert of the young female of Lizoneca redmanni does not apparently differ from Aegathoa oculata (Say). I have not suppressed the genus, however, because I could not be positive of the identity of these forms."

Ourozeuktes, Milne Edwards.
Ourozeuktcs, M. Edw., Hist. Nat. Crust., iii., 1840, p. 275.
Uroscuctes, Sch. and Meil., Naturh. Tidsskr., (3) xiv., 1884, p. 404.
Basal half of ceplialon immersed in first peraeon segntent. Bases of antennae widely scparated; first pair a little compressed. First peracon segment medianly longer than any of the others. Coxal plates thick and subpendulous. Last four pairs of peracopods successively increasing in length backwards. Pleon unisegmentate, moderately inmersed in peraeon.

As noted by Mine Edwards, in the young stages Ourozenkles is similar to the juveniles of other Cymothoidae; the adult female, however, is strikingly distinguished from all other members of the family by the following characters:The dactyli of the peraeopods are rather small; the basos and ischium of the last four pairs are expanded, on the lower edge, in the form of a lamella furnished with blood vessels. The segments of the pleon, excepting at the extreme lateral portions, are solidly coalesced, but the suture lines are distinct. The telson is submembranaceous; both the telson and the pleopods are supplicd with large blood vessels. The exopods of the first pair of pleopods are much enlarged, overlapping below, and reaching almost to, or a little beyond, the level of the apex of the telson, while their lateral parts are thickened and are recurved over the sides of the plcon ; the lamellar expansion of the protopod of the second to fifth pleopods is very well developed.
(10) Rich., Bull. U.S. Nat. Mus,, liv., 1905, p. 216.

Ourozelktes owenif, Mine Edwards.
Ourozeuktes ozernii, M. Edw., Hist. Nat. Crust., iii., 1840, p. 276, pl. xxxiii., fig. 8; Heller, Revise der Novara. Crust., 1868, p. 148 ; Hasw., Cat. Austr. Crust., 1882, p. 283; Lucas, Bull. Soc. ant. Franc., v. 1885, p. lvii.; Jennings, Journ. Limn. Soc., xxv., 1896, p. 329, pls. xiii., xiv.

Ourozcultes pyriformis, Hasw., bloc. cit., p. 283.
Urozeuctes owenii, Gerstacker, Brown's Thier-Reichs, Band. v., Abth. 2, pl. viii., fig. 20 (1881), and pl. xxvi., fig. 1 (1883) ; Sch. and Main., Naturh. Tidsskr., (3) xiv. (1884), p. 405, pl. xviii., figs. 5-7.

Uroscutes monaconthini, Sch. and Men., loc. cit., p. 407, pl. xviii., figs. 8, 9.
Urozeuctes caudatus, Sch. and Min., lac. cit., p. 411, pl. xviii., figs. 11, 12.
오. Ovigerous. Form broadly obovate. Cephalon suborbiculate, much wider than long and with anterior margin emarginate. Eyes distinct, rather small, situate laterally. First antennae stouter than second; composed of seven articles, the first three of which are indistinctly separated; first article as wide, and more than half as long, as second, which is very large, nearly as long as the three terminal articles together; second antennae nine-jointed, the last three

Fig. 17.
Ourozenkles owenii. Ovigerous female: a and b, dorsal and lateral views ($1 \frac{2}{3}$ diam.); c, antennae (8 diam.); d, mandible of left side, labium, and margin of labrum (8 diam.) ; e, mandible (8 diam.); f and g, first and second maxillae (8 diam.); h, maxilliped (7 diam.) ; i to 0 , first to seventh peracopods (2 diam.); p and q, ventral view of first and third pleopods (2 diam.) ; r, uropod ($3 \frac{1}{2}$ diam.).
articles reaching beyond apex of first antennae. Labrum visible in dorsal view, emarginate. Mandibles tapering towards distal end, which is directed inwards and is apically acute; below the extreme apex is a tiny, keen-edged lobe which, like the remainder of the cutting edge, is strongly chitinized; inner margin behind cutting edge produced into a thin, prominent lobe. Palp stout, the first article nearly as long as second and third together; third article short. First maxillae styliform, with the strongly chitinized, toothed apex lying in the emargination of the labrum, slightly behind the apices of the mandibles. Second maxillac wide, transversely curved, somewhat obscurely bilobed, the inner lobe small, with one or two spincs. Peraeon widest at third and fourth segments; antero-lateral angles of first segment acutely rounded, reaching to level of middle of length of cyes; first four segments impressed and rugose laterally, and with anterolateral portions tumid; each of last three segments shorter than any of others. Coxal plates of sccond and third segments reaching back to the postero-lateral angles of theit segments; remaining plates not reaching to this level. First pleon segment partly concealed beneath last peracon segment, with lateral parts free, each produced into a small lobe, which overlies the basal part of the exopod of the first pleopod, and reaches back to the level of the posterior angles of the thitd segment; a small lateral portion of cach of the second to fifth segments free, lobular. Uropods reaching to apex of pleon; protopod as long as, or longer than, rami; branches of the uropod of one side apically rounded, of the other acute; endopod wider, and longer or shorter, than exopod. Peraeopods each with propodus and dactylus short; lamcllae of basos and ischium of last four pairs successively increasing in sizc backwards; basos of scventh pair (with lamella) as wide as long; lamella of ischium of these peracopods very large, much longer than basos. Pleopods of second to fifth pairs successively decreasing in size backwards; endopod of first pair much shorter and very much narrower than exopod, that of second and third pairs a little shorter and much narrower than exopod; that of fourth and fifth pairs as long as, but much narrower than exopod; endopod of all pleopods obliquely subtruncate posierioriy; lanellar expansion of protopod of second to fifth plcopods greatly devcloped and similar in structure to the endoand cxopod; lamella of the last two pairs almost as long as cxopod.

Colont: Whitish, with a smoky median stripe on peracon and anterior part of pleon, and with telson black.

Length, 43 mm .
o. Form symmetrical, narrowly obovate, three times as long as greatest width. Cephalon large, wider than long, with anterior margin emarginate. Eyes large and conspicuous. First antennae stouter than second, composed of eight articles, the basal two of which are not conspicuously larger than the others. Sccond antennae composed of nine articies. Mandille much as in adult female, but with palp setose near apex. Second maxiliae slender, with a single hooked spine at apex of terminal article. First segment of peracon longer than any of the others. Pleon with six distinct segments; telsonic segment posteriorly rounded and fringed with hairs. Endopod of uropods only half as long as exopod, suboval in shape; exopod elongate, rather narrow. Peraeopods not very stout and not expanded; each with propodus and dactylus long ; propodus of first pair with three spines and carpus with one spine, on inner edge; merus with a spine at outer distal angle and dactylus serrated on inner edge. Pleopods each with two lamelliform rami; male appendage of second pair longer than endopod.

Colour: Yellow, dotted with chromatophores on ccphalon, peraeon and first five segments of pleon; more abundantly pigmented chromatophores form a dark median stripe, and another on each side. Telson transparent. Protopod and exopod of uropods with a line of chromatophores along outer edges.

Length, 7 mm .

Loc--New South Wales: Parramatta River, from Cantherines granulatus, Port Jackson, from Cantherines hippocrepis, etc., and Georges River, Botany Bay (Austr. Mus. Coll.), Laurieion, from Cantherines trachylepis (D. G. Stcad), Maroubra Bcach, from Cantherines hippocrepis (G. P. Whitley), Kurncll, Botany Bay, from (antherines sp. (W. A. Rainbow), Port Hacking, from Cantherines sp. (Miss M. Henry). South Australia: Gulf St. Vincent, from Cantherines guntheri (A. E. Waternan), from Cantherines hippocrepis (F. K. Boase, etc., and "from a shark" (?) (1)r. Cleland), Whyalla, from Cantherines sotosus (Dr. Souter), Port Willunga, from Cantherines setosuts (S . Howe), Largs Bay, from Cantherines sp. (A. E. Andrew). Western Australia: Punbury, from Cantherines sp. (W. I. Kimber), Cottesloc and Swan River, from leatherjackets, and Fremantle (il. Austr. Mus. Coll.).

Hab. -South-castcrn, southern, and south-western coasts of Australia. Kerguelen (fidc Jennings).

g
Fig. 18.
Ourozenktes ozenii. Malc: a, dorsal view ($7 \frac{1}{4}$ diam.) ; b, antennae (20 diam.) ; c, maxilliped (40 diam.) ; d and e, first and seventh peraeopods (20 diam.) ; d^{\prime}, dactylus of first peraeopod (40 diam.) ; f, second pleopod (20 diam.). g, Dorsal view of juvenile from marsupium (25 diam.).

Seven malcs, one of which is described above, were found with a female collected in South Australia. In this female the marsupium is not completely developed; the males were nesting under the basal joints of the peraeopods, outside the oostegites. It is improbable that thesc malcs have attained their maximam size and development, and it may be that, as suggested by Jennings, protandrous hermaphroditism occurs in this genus. Males 5 to 8 mm . in length were found under the legs of other females in which the oostegites are not developed.

Several females have juveniles in the brood pouch corresponding to the "pullus stadii primi" described by Schioedte and Meinert under their Urozuectes monacanthini; thesc average 2.7 mm . in length and 1.1 mm . in width, and have the usual characters of immature Cymothoids (fig. 18 g). The modifications peculiar to Ourozeuktes take place during growth.

More than fifty females of various sizes are before me ; the largest is 52 mm . in length. In an example 11 mm . in length (fig. 19, a) the cephalon is relatively larger than in more advanced specimens, the antennae and month parts are still much as in the male, and the peracon is not much wideted. The propodus and dactylus of the peraeopods are relatively shorter than in the brood young, but
much longer than in large females; the foliaccous expansions of the last three pairs are slightly developed. The pleon segments are coalesced and the telson is smooth and membranaceous; the pleopods and telson are not richly supplicd with blood-vessels, but the exopods of the first pleopods reach to the end of the pleon.

In very large ovigerous females the peraeon is usually relatively wider than in smaller egg-bearing specintens. The pleon of the adult female (when perfect) is subtriangular in shape, somewhat variable in relative length, tapers to the narrowly rounded or narrowly subtruncate apex, and has the lateral margins downbent; the apical part of the telson is, however, very often danaged and irregular. The cephalon is more elongate in some specimens than in others, and in one instance is almost as long as its basal width. A sooty, median stripe is often present on the peraeon, but some examples (during life) are white, without pigmentation excepting on the telson; in others the peraeon is lightly sprinkled with tiny chromatophores.

Fig. 19.
Ouroseuktes owenii, a, Young female (3 and three-fifths diam.), b and c, Ovigerous females (1^{8} diam. and nat. size). d, Ovigerous fcmale, syntype of O, pyrifornis, Haswell (nat. size).

The characters quoted by Schioedte and Meinert as separating their O. monacanthini and O. caudatus from O. owenii are unstable; the Danish authors founded the first species upon a single specimen 24 mm , in length from Sydncy, and the second upon a single, badly preserved Sonth Australian specimen of the same length. It may be remarked, however, that the pleon of the type of O. monacanthini is apparently relatively smaller than in any of the specimens now examined. Haswell applied the provisional name O. pyriformis to two large females (fig. $19, d$), which only differ from the type figure of O. owenii in having the telson more perfect (not abbreviated) and the peraeon relatively wider anteriorly.

Considering that Ourozenktes was described eighty-five years ago, it appears, strangely enough, that no detailed note has been published concerning its habis. Milne Edwards' female was without data ("Patrie inconnuc"), but Heller records the species from Sydney, and Lucas, in 1885, mentions a specimen taken "dans la poche branchiale d'un Monacanthus melanurus, Rich.," (? M. mogalourus, Rich.) from Port Jackson. A. Gerstaceker copics M. Edwards' figure in the Thier-Reichs, and adds an illustration of a young stage. Schioede and Meinert describe the beast under threc different names and furnish the information that their O. monacanthini was taken "c cavitate
abdominali’ (?) Monacanthini vittati promptim est." Haswell gives a translation of M. Edwards' specific description, and adds a short cliagnosis of the pear-shaped form which he considers distinct. Jennings describes a female said to have been obtained by a sailor "at sea near Kerguelen Island," and furnishes figures (some of which are not very accurate) of the animal and its parts. Finally, occasional casual references to the gent1s have appeared in literature.

Jemings' conjectures as to the habit of Ourozenktes are entirely wrong; he clecided that the "hinder limbs are very efficient swimming organs" and that the adtut animal "has the power of living frecly, though doubtless parasitic at times." As a matter of fact, it may be almost claimed that Ourozeuktes is an endoparasite, for, like Ichthyoxents, it burrows into the sides of fishes, is for the greater part concealed within the body thereof and, when adult, is unable to leave its host. From the material in hand it would appear that leatherjackets (Monacanthidac) are almost always chosen; according to the reports of lishermen and others, Ourozeukti's is anything but rare, and is found only in fishes of this family. The majority of specimens in our collections have been removed from their hosts, but it has been possible to examine some leatherjackets with the parasites in situ, and the following obscrvations result:-The crustacean enters the body cavity of its host some distance behind and below the pectoral fin (sometimes very close to the anus), but is nover completely concealed. the postcrior parts of the telson and pleopods protruding through the entrance slit (pls. xxxyi., xxxyii.). It lies always with the venter pressing against the intestines of the host, and usually bores forwards and slightly inwards, so that in comparatively small fishes the cephaton reaches the neighbourhood of the liver of the host. It rests in a pouch of membrane formed by reaclion of the injured tissues, and, normally, the only opening in this pouch is the slit through which the hinder parts of the parasitc protrude. The membrane is usually whitish, but in two instances is closely dotted with black chromatophores ; it is for the greater part thin and fragile, but the anterior end of the cul-de-sac --the "fceding area"-is subjected to laceration by the mandibles, maxillae, and anterior dactyli, and is rugose and thickened; the mouth parts are sometimes scarccly removed from the liver of the fish by more than the thickness of the feeding area of the enveloping menbrane. The entrance slit is very much narrower than the widh of the parasite (even when the last-named is of moderate size), and it is thas totally impossible for the established fomale to leave its host. In small fishes the parasite is jammed between the two halves of the shoulder girdle, a condition which doubtless causes the crustacean to assume a pyriform shape as it increases in size (fig. 19, d). In a specimon of one of our large species of leathorjacket (Cantherines hippocrepis) an Ourozeuktes has cntercd the body cavity close to the vent, and has bored almost dircctly upwards and inwards, so that its mouth parts have ahmost pierced the swim-bladder of the fish; this parasite is ncarly symmetricat.

The curiously expanded posterior limbs cvidently assist the parasite to maintain its position, these legs being firmly pressed outwards against the soft enclosing membrane; the dactyli of the antcrior peraeopods are hooked into the walls of the cavity near the feeding area. The large curved exopods of the first pleopods are obvionsly modificd for the purpose of holding open the aperture in the skin of the fish (pl, xxxvi.) ; these lateral branches, and the ploon, together form a sort of funnel in which the endopod of the first pleopods and the three lamellae of cach of the other pleopods are protected. The maxillipeds of the ovigerous female are lamellar in character and, as in other members of the family, are no doubt utilised to promote a flow of water through the marsupium
for the aeration of the eggs and young; in all probability the lamellar expansions of the posterior peraeopods also assist respiration.

It sometimes happens that a fish shclters two large Ourozeuktes, one on each side; I have before me a specimen of Cantherines granulatus, 135 mm . in length, in such case (pls. xxxvi., xxxvii.). The parasite on the left side is 26 mm . in length and 16 mm . it1 width (fig. 19, b), and the entrance slit in the skin of the fish is 12 mm . in length. This example is decidedly interesting, for its young are in progress of leaving the maternal brood pouch; these juveniles are, on the average, 3 mm . in length and 1.2 mm . in width, being thus larger than the "pullus stadii primi" of Schioedte and Meinert. Many young still remain in the marsupium, some are clinging to the pleopods of the mother, and others have emerged and firmly attached themselves to the skin of the fish (pl . xxxvi.). The example on the right side is also of some interest (pl. xxxvii.). It appears that in its efforts to penetrate further forward into the body of its host this specimen has allowed the exopod of the first pleopod of the right side to slip inside the body cavity of the fish. This has resulted in the rupturing of the lower side of the membrane sac and also of the wall of the intestine, so that the crustacean is partly embedded in a mass of food material from the gut of the fish; the posterior legs of the right side arc extended outwards and the dactyli are hooked into the gut, but the hind legs of the other side are directed backwards with the outer faces of the lamellae pressing against the undamaged side of the sac. The anterior end of the sac is as in normal cases. The dotted outline on the photograph shows the relative size and position of this individual, which is 28 mm . in length and 16 mm . in widih; the entrance slit is only 8 mm . wide.

Leatherjackets infested with Ouroseuktes sometimes appear thin and illnourished, and their flesh is flabby. The intestines and the anus often become displaced, the last-named moving a little to one side of the mid-line of the venter (pl. xxxvi.). I have removed one or two living female Ourozeuktes from their hosts; the parasitcs were singularly helpless when free and were quite unable to swim; when placed in water they sank to the bottom and gropingly waved their limbs, but otherwise remained motionlcss. They proved remarkably tenacious of life and lived for a considerable period out of water.

ADDENDA TO PART I.

Arcathona similis, Richardson.
A male of this species recently received from Mr. Glauert, of the Western Australian Museum, differs from the two females previously examined, and from the type male, in having the eyes larger and less wiclely separatcd, the narrowest interocular space being equal to one-sixth of the total width of the cephalon. The flagellum of the second antennae rcaches to the middle of the length of the fifth peraeon segment. The palp of the maxillipeds is four-jointed. The male appendage of the second pleopods reaches to the level of the apex of the endopod. This example is 14 mm , in length and was taken from a nannygai (Trachichthodes affnis) caught by Mr. G. A. Goss at Fremantle, Western Australia.

Also, two gorged specimens, a male and female, were collected a short time ago by Mr. Stan. Howe at Port Willunga, South Australia; these arc 17 nm . and 19 mm . in 1ength, respectively, and were found clinging near the anus of a parrot fish (Psendolabrus). During life they were whitish dorsally, spotted with brown. The eyes of both examples are widely scparated and the palp of the maxillipeds is four-jointed. In the male the flagcllum of the second antennac
reaches back to the apex of the last coxal plates; in the female it attains to the level of the hinder margin of the sixth peracon segment. The male appendage of the second pleopods is as in the male from Western Australia.

Aega cyclops, Haswell.
Included in a batch of material just reccived from Mr. Melbourne Ward, of Sydncy, is a small Aega which shotld evidently be referred to this species. This exanple, which is a male, agrees with Haswell's type in the form of the frontal lamina, antennae, peraeopods, maxillipeds, uropods, etc. The body, however, is slightly more slender, and the head is relatively snallcr, with the eyes smaller and meeting for a much shorter distance (only three facets in contact); also, a lesser part of the first pleon segment is covercd by the seventh peracon segment, so that the last coxal plates reach only to the hinder angles of that pleon scgment.

The flagellum of the first antennae consists of seven articles and a terminal style, that of the second pair of twelve articles and a style. The telsonic

Fig. 20.
Aega cyclops, male: a, dorsal view ($5 \frac{1}{2}$ diam.) ; b, maxilliped (38 diam.) c, second pleopod (15 diam.) ; d, telsonic segment and uropods (9 diam).
segment is roundly subtriangular in shape, with the posterior half of the lateral margins finely serrate.

Length, 10 mm .
Loc.-New Sonth Wales: Soutli-east of Sydney, in "New Zealand area," 75 faths. (M. Ward).

As previously noted, the trise shape of the telson camot be asccrtained from an examination of the type; A. meinerit, Miers, is apparently a closely allied species which has the telson apically truncate.

Rocinela sila, TIale.
A male dredged this year in Gulf St. Vincent closely resembles the holotype. The flagellum of the first antcnnac consists of five articles and a terminal style, that of the second antennae of elcven articles and a stylc. The male appendage of the second plopods is nearly as long as the inner ramus. During life the colouration was as follows:-Ccphalon margined with white, with a submarginal black line and with a white spot alongside intero-posterior angles
of eyes. Eyes black. Dorsum of peraeon and pleon with crowded brown reticulations (so that the ground colonr appears pale brown) ; with a pair of closely approximated dark stripes on mid-line of cephalon, peracon, and first five pleon segments. On each side of these modian lines are two other longitudinal stripes, the inner of which extends from the anterior margin of peraeon to basal part of telson, and the outer occupies the whole length of peraeon. Underside subhyaline. Peraeopods and antennac subhyaline, marked with a few dark chromatophores; coxal plates and basal half of uropods orange; telson, uropods, and coxal plates marked with black as previously described.

Loc.-South Australia: five miles off Semaphore, 5 faths. (H. M. Hale).

DESCRIPTION OF PLATES XXXVI. and XXXVII.

Plate XXXVI.
Left side of a leatherjacket (Cantherines granulatus) showing adult female Ourozeuktes ensconced in the body cavity, and juveniles (which have recently vacated the brood-pouch of the crustaccan) clinging to the skin. Note how the protruding exopods of the first pleopods of the parasite hold open the entrance slit in the skin of the fish. (3 diam.)

Plate XXXVII.

Right side of the same fish (see pl. xxxvi.), which is burdencd with a female Ourozeuktes in each side of the body cavity; the dotted line shows the relative size of the parasite. (3 diam.)

[^0]: ${ }^{(1)}$ Part I., Trans. Roy. Soc. S. Austr., xixix, 1925, pp. 128-185, figs. 1-28.

[^1]: (4) Sch. and Mein., Naturh. Tidsskr., (3) xiii., 1881, pl. iv., figs. 1-15.

[^2]: (9) Rich., Bur. of Fish., Doc. No. 736, 1910, p. 24, fig. 23.

